
AP Physics C. Eddy Currents.

A very strong magnet (e.g., a neodymium-iron-boron alloy) dropped down a vertical copper pipe does
not fall with constant acceleration, but instead glides down at a constant velocity; the gravitational force
is quickly met by an equal and opposite magnetic force upwards. Find the terminal velocity.

It is pretty clear that this magnetic force arises from Faraday’s Law. Here is what is happening: as the
magnet drops, it induces eddy currents in the pipe, and these in turn create a non-uniform magnetic field
which acts on the dipole. A full explanation of eddy currents is difficult; however, the main ideas are
accessible to anyone who has had a calculus-based electromagnetism course. Eddy currents also explain
why refrigerator magnets stick to refrigerators. Oddly, the subject of eddy currents is almost completely
ignored in most textbooks. Most physicists of the past two generations are not very familiar with them,
even though the great James Clerk Maxwell himself explained how they worked back in 1872. Most of what
follows I learned from a series of terrific papers by W. M. Saslow (cited at the end.)

1. The method of images (from E. M. Purcell, Electricity and Magnetism, first ed., p. 92)

Eventually we are going to look at a dipole magnet above a superconducting sheet. Electrical fields are
easier, so let’s start with that.

A point charge Q not too far above a very large conducting plate induces negative charges on the plate.
Find the distribution of these negative charges on the plate, i.e. find σ(r), where r is the distance from
the z-axis. (We know it is going to be symmetric with respect to the z-axis.)

For simplicity, let the plate lie in the x-y plane, and let the charge be at a point (0, 0, h) on the z-axis.
Because the conducting plate has to be an equipotential, the electric field lines starting on the positive
charge Q have to end up on the plate at right angles to the plate. (Remember, the electric field lines have
to be perpendicular to a line or a surface of constant ϕ.)

What we can do is find a simpler problem that has exactly the same solution on the plane. Imagine, instead
of the problem we have, a related problem of two charges, one +Q and the other −Q, located at (0, 0, h)
and (0, 0,−h) respectively. It is easy to see by symmetry that the field lines will be perpendicular to the
x-y plane, as required, and begin at the +Q charge as required. It is true that there will be a field below
the x-y plane with the two charges, and not with the original problem, but we will just ignore the solution
for z < 0, instead choosing E = 0 for z < 0. This second problem imagines an “image” charge of −Q below
a non-conducting plane to provide the exact same electric field as that due to the induced negative charge
on the conducting plane. If you imagine the plane as a mirror, you can see why the negative charge −Q is
called an “image”. The inventor of this technique seems to have been William Thomson, or Lord Kelvin as
he is usually known.

the actual situation: 
a positive charge Q
a distance h above a 
conducting plate

–

a different, equivalent 
situation: a positive charge Q 
a distance h above a nonconducting 
plate, and an "image" negative 
charge – Q a distance h below
the plate

Can we find the electric field at the plane? Certainly. Take a point (x, y) on the plane, and the z component
of the electric field due to both charges is given by

Ez = −kQ
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where cos θ =
h

R
, and R =

√
r2 + h2. That is,

Ez = −2kQh

R3
= − 2kQh

(r2 + h2)3/2

Recall that for a conducting plane, we have a simple connection between the electric field Ez and the charge
density, σ;

Ez = 4πkσ

which means that σ = Ez/4πk; in this case,

σ(r) =
−Qh

2π(r2 + h2)3/2

This is our answer. We can check it if we find the total charge on the plane; it should be equal to −Q.
Let’s see:

total surface charge =
∫

σ dA =
∫ ∞

0

σ 2πr dr

= − 1
2Qh

∫ ∞

0

2r

(r2 + h2)3/2
dr

Perform the integral with an easy u substitution; let u = r2 + h2. Then when r = 0, u = h2, and when
r = ∞, u = ∞ also. The integral becomes

total surface charge = − 1
2Qh

∫ ∞

h2
u−3/2 du = Qhu−1/2

∣∣∣∞
h2

= −Q

as expected!

2. A magnet above a superconducting sheet.

In exactly the same manner of the previous problem, imagine now a dipole magnet oriented along the z
axis, with south pole lower than the north pole, above a large superconducting sheet. It is an experimental
fact that magnetic fields cannot penetrate superconductors (this is called the Meissner effect.) How does
the superconductor prevent the magnetic field of the dipole from entering? Easy: it produces eddy currents
within itself to exactly counter the dipole’s magnetic field at its surface. We can describe this magnetic
field with an image dipole (of the opposite orientation.)

An astonishing consequence of this is that the magnet will levitate above the superconductor! We can use
the method of images to determine the equilibrium height at which this occurs.

First, we need an expression for the field of a magnetic dipole. Get this by considering the field of an
electric dipole, which is easy to find. Let a positive charge q be at the point (0, 0, h + `), and a negative
charge −q be at the point (0, 0, h− `). Let ~R be the vector from the point (0, 0, h) to the point P (x, y, 0).
Then the vector from the positive charge to P is

~R+ = ~R− `ẑ

The potential ϕ+ at point P due to the positive charge is

ϕ+ =
kq

R+
=

kq∣∣∣~R− `ẑ
∣∣∣

We can use Taylor’s theorem on this expression; we have

f(R+) = f(R)− `ẑ · ∇f(R) + . . .

As you should be able to show,

∇f(R) = R̂
df

dR



and so

∇ 1
R

= − R̂

R2
= −

~R

R3
.

Consequently,

ϕ+ =
kq

R
+

kq`ẑ · ~R

R3
+ . . .

and in exactly the same way,

ϕ− = −kq

R
+

k(−q)`(−ẑ) · ~R

R3
+ . . .

so that

ϕdipole = ϕ+ + ϕ− = +
2kq`ẑ · ~R

R3

where we drop the other terms (which will not be important, provided ` is � R.) It is traditional to
introduce the electric dipole moment, ~p, as

~p = 2q`ẑ = q~d

(basically, one draws the direction of the dipole moment from the negative to the positive charge; the
“moment” is the vector ~d = ~R+ − ~R− from the negative to the positive charge; which is 2`ẑ in this case.
This direction is chosen so that the dipole lines up with an external electric field.) Then

ϕdipole =
k~p · ~R

R3

The electric field of the dipole is given by the gradient of this potential;

~Edipole = −∇ϕdipole

Let’s look at this in detail.

∇
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R3

)
=
(
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)
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+
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1
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)
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by the product rule. The first term is found by the rule given above, and is equal to(
~p · ~R

)(
−3

R̂

R4

)
= − (3~p · R̂)R̂
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Recall that ∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
and ~p · ~R = pxx + pyy + pzz. Then ∂(pxx + pyy + pzz)/∂x = px, and

similarly for the other derivatives, which gives

∇~p · ~R = ~p

so that
~Edipole = k

(3~p · R̂)R̂− ~p

R3

We can simply write down the equivalent magnetic field for a magnetic dipole; introduce ~m for the magnetic
dipole moment; then

~Bdipole = k′
(3 ~m · R̂)R̂− ~m

R3

To determine the position of the dipole magnet above a superconducting sheet, we will write down a formula
for the energy of the dipole as a function of its height h above the sheet, and then minimize the energy.
First we have to find the magnetic energy of the dipole.

Again, we rely on analogy with an electric dipole. Imagine an electric dipole as before in a uniform electric
field. The net force on the dipole will be zero, because the forces on either end are equal and opposite.
There will, however, be a torque:



The torque will be given by
~τ = 1

2
~d× q~E + 1

2
~d× q~E = ~p× ~E

The size of the torque is pE sin θ, and the energy involved in turning the dipole in the field is given by

Work = Udipole =
∫

pE sin θ dθ = −pE cos θ = −~p · ~E

so that we should expect that for the magnetic dipole, an energy of the form

Udipole = − ~m · ~B

and for a magnetic dipole in a constant magnetic field, sure enough, that is the right formula. However,
things are a little more complicated in this case. The magnetic field of the superconducting plate, which we
are describing by the image dipole, would not be present except for the other dipole; that is, this magnetic
field is induced by the real magnet. We might imagine that there would be a linear relation between the
two; say

Bimage = λm

where λ is some constant. That is, we should say

dU = −m cos θ dB = −λm cos θ dm

or
Udipole = − 1

2λm2 cos θ = − 1
2

~m · ~Bi

The magnetic field due to the image dipole is, from before,

~Bi = k′
(3 ~m · R̂)R̂− ~m

R3

Let the real magnet be oriented with its north pole along the z axis, and let it be a height h above the the
superconducting plate. Then ~m is oriented parallel to ẑ, and ~R = 2hẑ, because the image dipole is as far
below the plate as the real dipole is above. The image field has the opposite orientation (to repel the real
dipole.) That means

~m · ~Bi = −k′
3m2 −m2

(2h)3

or

Udipole = k′
m2

(2h)3

To this we add the standard Ugrav = Mgh; the magnet has a mass M . The total energy is given by

U = k′
m2

(2h)3
+ Mgh

Minimize this by taking the derivative with respect to h and setting it equal to zero;

dU

dh
= 0 = −3k′

m2

8h4
+ Mg

or

h = 4

√
3k′m2

8Mg



Basically, the magnet induces surface eddy currents that act to repel (and expel) the magnet’s field from
penetrating the conductor, in obedience to the Meissner effect. Exactly the opposite occurs with ordinary
magnets and ferromagnetic materials (for instance, the refrigerator’s door); then the magnet induces eddy
currents which produce the same orientation of magnetic field as the magnet, and hence attraction, rather
than repulsion. A material which behaves this way is said to be permeable; the degree to which the
material follows the lead of the external magnet is called its permeability. The superconductor is completely
impermeable; ideally iron can be taken as infinitely permeable.

3. A strong magnet dropped into a conducting cylinder.

As the magnet falls, its poles induce currents in the cylinder (which we will model as a stack of circular
loops of wire; each loop has an area, so the falling magnet changes flux and by Faraday’s law induces a
current.) These eddy currents produce a magnetic field, which then attracts the magnet, slowing the fall.
The faster the fall, the more rapid the flux change, the greater the current, and the greater the resistive
force, so the magnet reaches a terminal velocity quickly.

There are two ways to proceed. The more difficult is to calculate explicitly the force between the dipole and
the induced magnetic field. Much easier is to calculate the energy balance; the power put into the system
by gravity (force times velocity, or Mgv) must equal the power dissipated by Joule heating (current times
voltage, or

∫
EdI). We’ll do that, rather than calculate the forces. But for completeness (and to answer,

finally, Will Diamond ’07’s question) here is the formula for the force on a dipole:

Fmag on a dipole = ( ~m · ∇)~B

This formula makes sense because of the argument given earlier; a uniform magnetic field cannot exert a
force on a dipole because the separate forces on either pole cancel. You can, if you feel virtuous, put in the
expression for the magnetic field of a dipole derived above, find the gradient of it, and obtain the formula
for the force between two dipoles. It ain’t pretty.

So, let’s balance the energies. Once again we proceed with the analogy of an electric dipole. We need
to find the flux associated with either pole; the time derivative of this flux will give us the voltage that
produces the eddy currents. Imagine dropping a charge into a cylinder of inner radius a. What flux will
be experienced at the cylinder walls? Consider a ring of the cylinder a distance z below the charge. The
electric field is spherically symmetric, so the geometry is like this:

Element of flux  

Charge falling in a pipe:

The integration goes from φ = 0 to φ = sin−1(a/r). That is,

ΦE+ = E ×
∫ sin−1(a/r)

0

2πr2 sinφ dφ = 2πr2E × − cos φ

∣∣∣∣ sin−1(a/r)

0

= 2πr2E

(
1− z√

a2 + z2

)
We know that the flux over the entire sphere is E ·Asphere = 4πkq, so

ΦE+ = E ·Acap = E ·Asphere ×
Acap

Asphere

= 4πkq × 2πr2

4πr2

(
1− z√

a2 + z2

)
= 2πkq

(
1− z√

a2 + z2

)
Let the negative charge be located a distance of 2` above the positive charge; and let z = 0 correspond to



the top of the cylinder. Then

ΦE− = 2πk(−q)

(
1− z − 2`√

a2 + (z − 2`)2

)

and the net electric flux is

ΦE = 2πkq

(
z − 2`√

a2 + (z − 2`)2
− z√

a2 + z2

)
Let the magnetic dipole be regarded as two magnetic monopoles, q∗ and −q∗, separated by a distance
2`; ultimately we will say m = 2q∗` is the magnetic moment of the dipole. (There aren’t any magnetic
monopoles, but we can pretend, and so by analogy find what we need.) Then the net magnetic flux should
be

ΦB = 2πk′q∗

(
z − 2`√

a2 + (z − 2`)2
− z√

a2 + z2

)
Faraday’s Law implies

E = −dΦB

dt
= 2πk′q∗

(
1√

a2 + (z − 2`)2
− 1√

a2 + z2
− (z − 2`)2

(a2 + (z − 2`)2)3/2
+

z2

(a2 + z2)3/2

)
dz

dt

= 2πk′q∗a2v

(
1

(a2 + (z − 2`)2)3/2
− 1

(a2 + z2)3/2

)
The power dissipated by a single ring of width dz is dP = E dI. Let the conductance G = 1/R, so that
I = EG, and dI = E dG. Recall the rule about resistance, R; R = ρL/A. Then dG = (1/ρL)dA. The ring
has a length L = 2πa, and a cross-sectional area w × dz. That gives

dP = E dI = E2 w

2πaρ
dz =

4π2k′ 2q∗ 2a4v2w

2πaρ

[
1

(a2 + (z − 2`)2)3/2
− 1

(a2 + z2)3/2

]2
dz

The integration is to be conducted over the length of the tube. There is no reason not to imagine the tube
infinite; the magnetic field dies off pretty quickly with distance, and the magnet reaches terminal velocity
quickly. (Also, this makes the integration easier.) Then

P =
2πk′ 2q∗ 2a3v2w

ρ

∫ ∞

−∞

[
1

(a2 + (z − 2`)2)3/2
− 1

(a2 + z2)3/2

]2
dz

The integral can be converted into something more tractable. First, rescale by letting z = ay, and 2` = ax.
Then the integral becomes

1
a5

∫ ∞

−∞

[
1

(1 + (y − x)2)3/2
− 1

(1 + y2)3/2

]2
dy =

1
a5

f(x)

so that

P =
2πk′ 2q∗ 2v2w

ρa2
f(x)

The function f(x) never gets larger than about 2.356. For small x, f(x) is approximately parabolic. This
can be seen by using Taylor’s theorem;

1
(1 + (y − x)2)3/2

≈ 1
(1 + y2)3/2

+
3xy

(1 + (y)2)5/2

so [
1

(1 + (y − x)2)3/2
− 1

(1 + y2)3/2

]2
≈ 9x2y2

(1 + y2)5



and plugging this into the integral gives

f(x) = 9x2

∫ ∞

−∞

y2

(1 + y2)5
dy = 9x2 × 5π

128
=

45π

128
x2

(The integral can be looked up on line or in a table of integrals, or may be worked out with a couple of
techniques. Consider for example differentiating

∫
1

a2+y2 dy = π/a with respect to a, and repeat.) This
gives

P =
2πk′ 2q∗ 2v2w

ρa2

45π

128

(
2`

a

)2

=
45π2k′2(2`q∗)2v2w

64ρa4

Recall that 2`q∗ = m, the magnetic dipole moment. Also, we have P = Mgv from before; so setting these
equal to each other gives

45π2k′2m2v2w

64ρa4
= Mgv

and solving, finally, for v gives

v =
64Mgρa4

45π2k′2m2w

Does this make sense physically? As Mg increases, v increases; that’s reasonable; a greater downward pull
would produce a greater terminal velocity. As ρ increases, v increases: this is also reasonable, because
increased ρ produces smaller current, hence less resistance to the fall (as there is less current for the
magnetic field to grab on to.) By the same argument, as w, the thickness of the pipe, increases, the
resistance decreases, hence greater current, hence greater magnetic force resisting, hence lesser v. Also,
as the magnetic moment m increases, the speed decreases, as expected. The fourth power dependence of
the radius of the pipe is a little unexpected; surely the radius matters (as it increases the resistance of
the individual coils) and also, the farther away the coils are, the less the magnetic field can influence the
currents. So the radius is hugely important.

Experimentally it turns out that the approximation of f(x) as parabolic does not hold up, and produces
about a 5% error. But the main features of the phenomenon seem to be explained.

One may also obtain the expression for v by balancing forces. This is shown in the second of Saslow’s
papers referenced below.
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